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Quantum noise-induced chaotic oscillations
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We examine the weak quantum noise limit of the Wigner equation for phase space distribution functions. It
has been shown that the leading order quantum noise described in terms of an auxiliary Hamiltonian manifests
itself as an additional fluctuational degree of freedom which may induce chaotic and regular oscillations in a
nonlinear oscillator.

PACS numbd(s): 05.45.Mt

The absence of any direct counterpart to classical trajec- IW W
tories in phase space in quantum theory poses a special prob- ot IOW +V(x,t) %
lem in nonlinear dynamical systems from the point of view
of quantum-classical corresponderide-3]. As an essential RI(—1)" g2ntly g2ntlyy
step towards understanding quantum systems a number of o T il (3
semiquantum methods, via Wentzel-Kramers-Brillouin n=127%(2n+1)! ox ap

(WKB) approximation, Ehrenfest theorem, or mean field ap-

proximation as well as some exact calculations, etc., have The third term in Eq(3) corresponds to quantum correc-
been proposed and investigated over the yEa#8]. A par-  tion to classical Liouville dynamics.

ticularly noteworthy casp4] concerns a system that seems to ~ Our aim in this report is to explore an auxiliary Hamil-
be classically integrable but not in the quantum case due tinian description corresponding to ) in the semiclas-
tunneling. In the present paper we examine a related issugical limit7—0. To put this in an appropriate context let us
i.e., the weak quantum noise limit of the Wigner equation forshow below an analogy with an observatid®] on a weak
phase space distribution functions and show that it is posthermal noise limit of overdamped Brownian motion of a
sible to describe the quantum fluctuations of the system iparticle in a force field.

terms of an auxiliary degree of freedom within an effective In that significant analysis, Luchinsky and McClintock
Hamiltonian formalism. This allows us to demonstrate an[10] have studied the large fluctuatiofuf the order>D,D
interesting quantum noise-induced chaotic and regular bepeing the diffusion coefficientof the dynamical variables

havior in a driven double-well oscillator. away from and return to the stable state of the system with a
To start, we consider a one-degree-of-freedom system delear demonstration of detailed balance. The physical situa-
scribed by the Hamiltonian equation of motion: tion is governed by the standard Fokker-Planck equation for
probability densityP.(x,t),
oH
X=—=p, -
ap P PO .. D
M, .
p=-x =~V (xb, @ whereK (x,t) denotes the force field.

In the weak noise limiD is considered to be a smallness
wherex and p are the coordinate and momentum variablesparameter such that in the limid —small, Pc(f,t) can be
for the system described by the Hamiltonidi(x,p,t). described by a WKB-type approximation of the Fokker-
V(x,t) refers to the potential of the system. The reversiblePlanck equation [10,11] of the form Pc(i,t)
Liouville dynamics corresponding to E¢L) is given by =z(x,t)exgw(x,t)/D] . Herez(x,t) is a prefactor anav(X,t)
is the classical action satisfying the Hamilton-Jacobi equa-

ap ap . ap tion which can be solved by the integration of an auxiliary
T &J“V (X't)%' @ Hamiltonian equation of motiofilQ]
Here p(x,p,t) is the classical phase space distribution Loson o K.
i . Xx=p+K, p=—-—=p,
function. For a quantum-mechanical system, howexep, IX
are not simultaneous observables because they become op-
erators which obey the Heisenberg uncertainty relation. The 1
guantum analog of classical phase space distribution function Hou(X,p,t) =p-K(X,t)+ =p-p, p=VYw, (5)
p corresponds to Wigner phase space functii(x,p,t); 2
X,p how being the number variablesWV is given by Wigner _
equation[9]: wherep is a momentum of the auxiliary system.
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FIG. 1. Plot ofx vs p on the Poincareurface of sectionX
=0) for Eqg. (11) with initial condition x=—2.512p=0X—0,P
=0. (Units are arbitrary.

The origin of this auxiliary momenturﬁ is the fluctua-
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FIG. 2. Plot ofx vs p for Eq. (1) with Hamiltonian (10) and
initial conditionx= —2.512 andp=0.0.

where we have defined the auxiliary coordinxtand mo-
mentumP as

tions of the reservoir. In a thermally equilibrated system as

emphasized by Luchinsky and McClinto¢kO], a typical
large fluctuation of the variabbéimplies a temporary depar-
ture from its stable statEs to some remote stabéf (in the
presence of|5) followed by a return t0>2S as a result of
relaxation in the absence of fluctuatioms (i.e., p=0).

Luchinsky and McClintock have studied these quctuatlonaI
and relaxational paths in analog electronic circuits and dem=

onstrated the symmetry of growth and decay of classical
fluctuations in equilibrium.

C)

The interpretation of the auxiliary variable§ and P is
now derivable from the analysis of Luchinsky and McClin-
tock [10]. The introduction ofX and P in the dynamics im-
plies the addition of a new degree of freedom into the clas-
sical system originally described byp. Since the auxiliary
fegree of freedomX,P) owes its existence to the weak

quantum noise, we must look for the influence of weak quan-

We now return to the present problem and in analogy tgum fluctuations on the dynamics in the linit-0,P—0, so

weak thermal noise limit we look for the weak quantum
noise limit of Eq.(3) by settingzZ—0 with W(x,p,t) de-
scribed by a WKB type approximation of the form

|

whereW, is again a preexponential factor as(ck, p,t) is the

s(x,p,t)

- ©®)

W(x,p,t)=Wo(x,t)ex;< -

classical action function satisfying Hamilton-Jacobi equat|0n

which can be solved by integrating the following Hamilton’s
equations:

X=pn,

X=P,
. , (_1)3n+1 1 (92n+lv .
p—V (X’t)_n;l 22n (2n)! r7X2n+l !

_1\3n+1 2(n+1)
(-1 OV anea

P=V"(x,t)X— >, 7)

n=1

220(2n+1)!1 gx?( 1)
with the auxiliary HamiltoniarH 5,4

(_ l)3n+lx2n+1 &2n+ lV

22(2n+1)1  gx2n*l’
€S)

Hau=PP—V/ (X, 1) X+ >,

n=1

that the Hamiltonian tends to be vanishigsince theX andP
appear as multiplicative factors in the auxiliary Hamiltonian
Hau- It is therefore plausible that this vanishing Hamil-
tonian method captures the essential features of some generic
quantum effect of the dynamics in classical terms in the
weak quantum fluctuation limit. In what follows we shall be
concerned with a quantum noise-induced barrier crossing
dynamics—as a typical effect of this kind in a driven double-
well system. Furthermore, since the auxiliary Hamiltonian

S

FIG. 3. Same as in Fig. 1 but for=—2.509 andp=0.0.
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it appears to be quite significant from the point of view of
what may be termed as quantum chaos. We point out, in
passing, that the Wigner function approach of a somewhat
different kind has also been considered earlier by Zurek and
co-workers[8] for the analysis of the quantum decoherence
problem in the context of the quantum-classical correspon-
dence.

The testing ground of the above analysis is a driven
double well oscillator characterized by the following Hamil-
tonian:

p2
H="5 +V(x),

V(x,t)=ax*—bx?+gxcosQt, (10

where a and b are the constants defining the potentigl.
includes the effect of coupling with the oscillator with the
external field with frequenc{). The model described by Eq.
(10) has been the standard paradigm for studying chaotic
dynamics over the last few yedrs2-15.

The equation of motion corresponding to the auxiliary
HamiltonianH ,, is given by

p=4ax®—2bx+gcosQt—3axX?,

P=(12ax?—2b)X—aXx3. (12)

In order to make the following numerical analysis consis-
tent with this scheme of a weak quantum noise limit it is
necessary to consider the limit of auxiliary Hamiltonian. To
this end we fix the initial condition for the quantum noise
degree of freedonP=0 and letX— very small for the en-
tire analysis. The relevant parameters for the numerical study
[14,15 area=0.5,b=10,g=10, and()=6.07.

The results of the numerical integration of Efjl) for the
initial condition of the oscillatorp=0x=—2.512 (along
with P=0 and X=1.5x10 %) are shown in the Poincare
plot (Fig. 1). What is apparent from a detailed follow-up of
the system is that the system rapidly jumps back and forth
between the two wells at irregular intervals of time resulting
in a chaotic Poincarenap spread over the two wells. This is
in sharp contrast to what we observe in Fig. 2 on plotting the
results of the numerical integration of classical equations of
motion corresponding to Eq1) and the Hamiltonian(10)

FIG. 4. Same as in Fig. 1 but for=—2.5093 ando=0. The
observations are taken for the time intervi@st=0 to 1293 (left
well), (b) t=1293T to 4291 (right well), and (c) t=4291T to
72601 (left well) [T (=2#/Q) is the time period of the driving
field].

with the same initial conditiorp=0 andx=—2.512. The
system in this case resides in the four islands of the left well.
It is thus immediately apparent that the quantum noise de-
gree of freedom which imparts weak quantum fluctuations in
the system through very small but nonzetanduces a pas-
sage from the left to right well and back.

describes an effective two-degree-of-freedom system, the In Fig. 3 we fix the initial condition at a different turning
system, in general, by virtue of nonintegrability may admitpoint p=0x=—2.509 and calculate the auxiliary Hamil-
chaotic behavior. This allows us to study a dynamical systentonian dynamics Eq.11). It is interesting to observe that the
where one of the degrees of freedom is of quantum originnoise strength is not sufficient to make the system move
Thus if the driven one degree of freedom is chaotic, thefrom the left well where it stays permanently by depicting a
influence of the quantum fluctuational degree of freedom ortlosed regular curve on the Poincaction.
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The quantum noise-induced barrier crossing dynamics In summary, we have shown that the leading order quan-
from the left to right well and back is illustrated in Figs. tum noise in the Wigner equation for phase space distribu-
4(a)—(c). The initial condition for the oscillator used in this tion functions results in an auxiliary Hamiltonian where the
case isp=0x=—2.5093. The closed curve in Fig(a& ex-  quantum noise manifests itself as an extra fluctuational de-
hibits a snapshot of the confinement of the systenthe left  gree of freedom. Depending on the initial conditions this
well) upto the timet=nT wheren=1293 andT is the time  may induce irregular or regular hopping between the two
period of the external fieldT=2=/(}). The system then elis of a double-well oscillator. It is thus possible that a
jumps to the right well to stay there for a period of time nopjinear system may sustain chaotic oscillations by quan-

2998 This is shown in Fig. ). The process goes on re- ym nojse, even when its classical counterpart is fully regu-
peating for the next period of time 2969vhen the system

gets confined in the left well again. The back and forth quan-

tum noise-induced oscillations between the two wells illus- B.C.B. is indebted to the Council of Scientific and Indus-
trate a regular dynamics in this case. In the absence of noisgial Research(C.S.I.R), Government of India, for partial
the classical systeifEq. (1)] remains localized in a specific financial support.

well.
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