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Quantum noise-induced chaotic oscillations
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~Received 25 August 1999!

We examine the weak quantum noise limit of the Wigner equation for phase space distribution functions. It
has been shown that the leading order quantum noise described in terms of an auxiliary Hamiltonian manifests
itself as an additional fluctuational degree of freedom which may induce chaotic and regular oscillations in a
nonlinear oscillator.

PACS number~s!: 05.45.Mt
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The absence of any direct counterpart to classical tra
tories in phase space in quantum theory poses a special p
lem in nonlinear dynamical systems from the point of vie
of quantum-classical correspondence@1–3#. As an essentia
step towards understanding quantum systems a numbe
semiquantum methods, via Wentzel-Kramers-Brillou
~WKB! approximation, Ehrenfest theorem, or mean field
proximation as well as some exact calculations, etc., h
been proposed and investigated over the years@1–8#. A par-
ticularly noteworthy case@4# concerns a system that seems
be classically integrable but not in the quantum case du
tunneling. In the present paper we examine a related is
i.e., the weak quantum noise limit of the Wigner equation
phase space distribution functions and show that it is p
sible to describe the quantum fluctuations of the system
terms of an auxiliary degree of freedom within an effecti
Hamiltonian formalism. This allows us to demonstrate
interesting quantum noise-induced chaotic and regular
havior in a driven double-well oscillator.

To start, we consider a one-degree-of-freedom system
scribed by the Hamiltonian equation of motion:

ẋ5
]H

]p
5p,

ṗ52
]H

]x
52V8~x,t !, ~1!

wherex and p are the coordinate and momentum variab
for the system described by the HamiltonianH(x,p,t).
V(x,t) refers to the potential of the system. The reversi
Liouville dynamics corresponding to Eq.~1! is given by

]r

]t
52p

]r

]x
1V8~x,t !

]r

]p
. ~2!

Here r(x,p,t) is the classical phase space distributi
function. For a quantum-mechanical system, however,x,p
are not simultaneous observables because they becom
erators which obey the Heisenberg uncertainty relation.
quantum analog of classical phase space distribution func
r corresponds to Wigner phase space functionW(x,p,t);
x,p now being thec number variables.W is given by Wigner
equation@9#:
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]W

]t
52p

]W

]x
1V8~x,t !

]W

]p

1 (
n>1

\2n~21!n

22n~2n11!!

]2n11V

]x2n11

]2n11W

]p2n11
. ~3!

The third term in Eq.~3! corresponds to quantum corre
tion to classical Liouville dynamics.

Our aim in this report is to explore an auxiliary Hami
tonian description corresponding to Eq.~3! in the semiclas-
sical limit \→0. To put this in an appropriate context let u
show below an analogy with an observation@10# on a weak
thermal noise limit of overdamped Brownian motion of
particle in a force field.

In that significant analysis, Luchinsky and McClintoc
@10# have studied the large fluctuations~of the order@AD,D
being the diffusion coefficient! of the dynamical variablesxW
away from and return to the stable state of the system wi
clear demonstration of detailed balance. The physical si
tion is governed by the standard Fokker-Planck equation
probability densityPc(xW ,t),

]Pc~xW ,t !

]t
52¹W •KW ~xW ,t !Pc~xW ,t !1

D

2
¹2Pc~xW ,t !, ~4!

whereKW (xW ,t) denotes the force field.
In the weak noise limitD is considered to be a smallnes

parameter such that in the limitD→small, Pc(xW ,t) can be
described by a WKB-type approximation of the Fokke
Planck equation @10,11# of the form Pc(xW ,t)
5z(xW ,t)exp@w(xW,t)/D# . Herez(xW ,t) is a prefactor andw(xW ,t)
is the classical action satisfying the Hamilton-Jacobi eq
tion which can be solved by the integration of an auxilia
Hamiltonian equation of motion@10#

xẆ5pW 1KW , pẆ 52
]KW

]xW
pW ,

Haux~xW ,pW ,t !5pW •KW ~xW ,t !1
1

2
pW •pW , pW 5¹W w, ~5!

wherepW is a momentum of the auxiliary system.
3223 ©2000 The American Physical Society
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The origin of this auxiliary momentumpW is the fluctua-
tions of the reservoir. In a thermally equilibrated system
emphasized by Luchinsky and McClintock@10#, a typical
large fluctuation of the variablexW implies a temporary depar
ture from its stable statexW s to some remote statexW f ~in the
presence ofpW ) followed by a return toxW s as a result of
relaxation in the absence of fluctuationspW ~i.e., pW 50).
Luchinsky and McClintock have studied these fluctuatio
and relaxational paths in analog electronic circuits and d
onstrated the symmetry of growth and decay of class
fluctuations in equilibrium.

We now return to the present problem and in analogy
weak thermal noise limit we look for the weak quantu
noise limit of Eq. ~3! by setting\→0 with W(x,p,t) de-
scribed by a WKB type approximation of the form

W~x,p,t !5W0~x,t !expS 2
s~x,p,t !

\ D , ~6!

whereW0 is again a preexponential factor ands(x,p,t) is the
classical action function satisfying Hamilton-Jacobi equat
which can be solved by integrating the following Hamilton
equations:

ẋ5p,

Ẋ5P,

ṗ5V8~x,t !2 (
n>1

~21!3n11

22n

1

~2n!!

]2n11V

]x2n11
X2n,

Ṗ5V9~x,t !X2 (
n>1

~21!3n11

22n~2n11!!

]2(n11)V

]x2(n11)
X2n11 ~7!

with the auxiliary HamiltonianHaux

Haux5pP2V8~x,t !X1 (
n>1

~21!3n11X2n11

22n~2n11!!

]2n11V

]x2n11
,

~8!

FIG. 1. Plot of x vs p on the Poincare´ surface of section (X
50) for Eq. ~11! with initial condition x522.512,p50,X→0,P
50. ~Units are arbitrary.!
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where we have defined the auxiliary coordinateX and mo-
mentumP as

X5
]s

]p
and P5

]s

]x
. ~9!

The interpretation of the auxiliary variablesX and P is
now derivable from the analysis of Luchinsky and McCli
tock @10#. The introduction ofX andP in the dynamics im-
plies the addition of a new degree of freedom into the cl
sical system originally described byx,p. Since the auxiliary
degree of freedom (X,P) owes its existence to the wea
quantum noise, we must look for the influence of weak qu
tum fluctuations on the dynamics in the limitX→0,P→0, so
that the Hamiltonian tends to be vanishing~since theX andP
appear as multiplicative factors in the auxiliary Hamiltoni
Haux). It is therefore plausible that this vanishing Ham
tonian method captures the essential features of some ge
quantum effect of the dynamics in classical terms in
weak quantum fluctuation limit. In what follows we shall b
concerned with a quantum noise-induced barrier cross
dynamics—as a typical effect of this kind in a driven doub
well system. Furthermore, since the auxiliary Hamiltoni

FIG. 2. Plot ofx vs p for Eq. ~1! with Hamiltonian ~10! and
initial condition x522.512 andp50.0.

FIG. 3. Same as in Fig. 1 but forx522.509 andp50.0.
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describes an effective two-degree-of-freedom system,
system, in general, by virtue of nonintegrability may adm
chaotic behavior. This allows us to study a dynamical sys
where one of the degrees of freedom is of quantum orig
Thus if the driven one degree of freedom is chaotic,
influence of the quantum fluctuational degree of freedom

FIG. 4. Same as in Fig. 1 but forx522.5093 andp50. The
observations are taken for the time intervals~a! t50 to 1293T ~left
well!, ~b! t51293T to 4291T ~right well!, and ~c! t54291T to
7260T ~left well! @T (52p/V) is the time period of the driving
field#.
e
t
m
.

e
n

it appears to be quite significant from the point of view
what may be termed as quantum chaos. We point out
passing, that the Wigner function approach of a somew
different kind has also been considered earlier by Zurek
co-workers@8# for the analysis of the quantum decoheren
problem in the context of the quantum-classical corresp
dence.

The testing ground of the above analysis is a driv
double well oscillator characterized by the following Ham
tonian:

H5
p2

2
1V~x,t !,

V~x,t !5ax42bx21gx cosVt, ~10!

where a and b are the constants defining the potential.g
includes the effect of coupling with the oscillator with th
external field with frequencyV. The model described by Eq
~10! has been the standard paradigm for studying cha
dynamics over the last few years@12–15#.

The equation of motion corresponding to the auxilia
HamiltonianHaux is given by

ẋ5p,

Ẋ5P,

ṗ54ax322bx1g cosVt23axX2,

Ṗ5~12ax222b!X2aX3. ~11!

In order to make the following numerical analysis cons
tent with this scheme of a weak quantum noise limit it
necessary to consider the limit of auxiliary Hamiltonian. T
this end we fix the initial condition for the quantum nois
degree of freedomP50 and letX→ very small for the en-
tire analysis. The relevant parameters for the numerical st
@14,15# area50.5, b510,g510, andV56.07.

The results of the numerical integration of Eq.~11! for the
initial condition of the oscillatorp50,x522.512 ~along
with P50 and X51.531026) are shown in the Poincar´
plot ~Fig. 1!. What is apparent from a detailed follow-up o
the system is that the system rapidly jumps back and fo
between the two wells at irregular intervals of time resulti
in a chaotic Poincare´ map spread over the two wells. This
in sharp contrast to what we observe in Fig. 2 on plotting
results of the numerical integration of classical equations
motion corresponding to Eq.~1! and the Hamiltonian~10!
with the same initial conditionp50 and x522.512. The
system in this case resides in the four islands of the left w
It is thus immediately apparent that the quantum noise
gree of freedom which imparts weak quantum fluctuations
the system through very small but nonzeroX induces a pas-
sage from the left to right well and back.

In Fig. 3 we fix the initial condition at a different turning
point p50,x522.509 and calculate the auxiliary Hami
tonian dynamics Eq.~11!. It is interesting to observe that th
noise strength is not sufficient to make the system m
from the left well where it stays permanently by depicting
closed regular curve on the Poincare´ section.
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The quantum noise-induced barrier crossing dynam
from the left to right well and back is illustrated in Fig
4~a!–~c!. The initial condition for the oscillator used in thi
case isp50,x522.5093. The closed curve in Fig. 4~a! ex-
hibits a snapshot of the confinement of the system~in the left
well! upto the timet5nT wheren51293 andT is the time
period of the external field (T52p/V). The system then
jumps to the right well to stay there for a period of tim
2998T. This is shown in Fig. 4~b!. The process goes on re
peating for the next period of time 2969T when the system
gets confined in the left well again. The back and forth qu
tum noise-induced oscillations between the two wells illu
trate a regular dynamics in this case. In the absence of n
the classical system@Eq. ~1!# remains localized in a specifi
well.
cs
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In summary, we have shown that the leading order qu
tum noise in the Wigner equation for phase space distri
tion functions results in an auxiliary Hamiltonian where t
quantum noise manifests itself as an extra fluctuational
gree of freedom. Depending on the initial conditions th
may induce irregular or regular hopping between the t
wells of a double-well oscillator. It is thus possible that
nonlinear system may sustain chaotic oscillations by qu
tum noise, even when its classical counterpart is fully re
lar.
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